MongoDB und Python

Ein paar Notizen zu Python und MongoDB 🙂 MongoDB ist eine NoSQL Datenbank, weitere Infos -> Wikipedia 🙂

Aktuelle MongoDB Version installieren (auf Ubuntu 16.04)

sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv 2930ADAE8CAF5059EE73BB4B58712A2291FA4AD5
echo "deb [ arch=amd64,arm64 ] https://repo.mongodb.org/apt/ubuntu xenial/mongodb-org/3.6 multiverse" | sudo tee /etc/apt/sources.list.d/mongodb-org-3.6.list
apt install apt-transport-https
apt update
apt-get install -y mongodb-org

siehe auch: https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/

Python Erweiterung pymongo für MongoDB installieren mit pip

python -m pip install pymongo

siehe auch: https://api.mongodb.com/python/current/

Verbindung zur MongoDB

from pymongo import MongoClient

client = MongoClient('localhost', 27017)

Connect zur Datenbank test

db = client.test

Collection myCollection in Datenbank test verbinden 

coll = db.myCollection

Einen Datensatz anlegen in einer Collection

post = {"author":"Fritz Fuchs", "book":"Hasenjagd"}
>>> coll.insert_one(post)
<pymongo.results.InsertOneResult object at 0x7fd0136ce3f8>

Mehrere Datensätze in einer Collection anlegen

>>> posts = [{"author":"Fritz Fuchs", "book":"Hasenjagd 5"}, {"author":"Fritz Fuchs", "book":"Hasenjagd 6"}, {"author":"Fritz Fuchs", "book":"Hasenjagd 7"}]
>>> result = coll.insert_many(posts)
>>> result.inserted_ids
[ObjectId('5b259b2c39d9c04f7b43af01'), ObjectId('5b259b2c39d9c04f7b43af02'), ObjectId('5b259b2c39d9c04f7b43af03')]

Datensatz suchen

>>> coll.find_one({"author":"Fritz Fuchs"}) 
{u'_id': ObjectId('5b25998139d9c04f7b43aefe'), u'book': u'Hasenjagd', u'author': u'Fritz Fuchs'}

Datensatz mit Regex suchen

>>> coll.find_one({"author":{"$regex": "^Fritz.*"}})     
{u'_id': ObjectId('5b25998139d9c04f7b43aefe'), u'book': u'Hasenjagd', u'author': u'Fritz Fuchs'}

Datensatz mit ObjectId abrufen

>>> from bson.objectid import ObjectId
>>> coll.find_one({"_id":ObjectId("5b25998139d9c04f7b43aefe")})
{u'_id': ObjectId('5b25998139d9c04f7b43aefe'), u'book': u'Hasenjagd', u'author': u'Fritz Fuchs'}

Mehrere Datensätze abrufen z.B. mit Regex

>>> for post in coll.find({"author":{"$regex": "^Fritz.*"}}):
...     print post
... 
{u'_id': ObjectId('5b25998139d9c04f7b43aefe'), u'book': u'Hasenjagd', u'author': u'Fritz Fuchs'}
{u'_id': ObjectId('5b259a8939d9c04f7b43aeff'), u'book': u'Hasenjagd 2', u'author': u'Fritz Fuchs'}
{u'_id': ObjectId('5b259a9039d9c04f7b43af00'), u'book': u'Hasenjagd 3', u'author': u'Fritz Fuchs'}

Index erzeugen für Collection z.B. Username ist Unique

>>> import pymongo
>>> db.users.create_index([('user_id', pymongo.ASCENDING)], unique=True)
u'user_id_1'
>>> new_users = [{'user_id':'max'},{'user_id':'fritz'}]     
>>> db.users.insert_many(new_users)
<pymongo.results.InsertManyResult object at 0x7fd0136cee18>                   
>>> new_user = {'user_id':'max'}      
>>> db.users.insert_one(new_user) 
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "/usr/local/lib/python2.7/dist-packages/pymongo/collection.py", line 683, in insert_one
    session=session),
  File "/usr/local/lib/python2.7/dist-packages/pymongo/collection.py", line 599, in _insert
    bypass_doc_val, session)
  File "/usr/local/lib/python2.7/dist-packages/pymongo/collection.py", line 580, in _insert_one
    _check_write_command_response(result)
  File "/usr/local/lib/python2.7/dist-packages/pymongo/helpers.py", line 207, in _check_write_command_response
    _raise_last_write_error(write_errors)
  File "/usr/local/lib/python2.7/dist-packages/pymongo/helpers.py", line 188, in _raise_last_write_error
    raise DuplicateKeyError(error.get("errmsg"), 11000, error)
pymongo.errors.DuplicateKeyError: E11000 duplicate key error collection: test.users index: user_id_1 dup key: { : "max" }

ObjectId als String

>>> new_user = {'user_id':'maxx'} 
>>> result = db.users.insert_one(new_user) 
>>> result
<pymongo.results.InsertOneResult object at 0x7fd0122410e0>
>>> result.inserted_id
ObjectId('5b259ead39d9c04f7b43af07')
>>> str(result.inserted_id)   
'5b259ead39d9c04f7b43af07'

String ObjectId zu ObjectId Object wandeln und für Suche verwenden

>>> from bson.objectid import ObjectId
>>> str_obj = '5b259ead39d9c04f7b43af07'
>>> users.find_one({'_id':ObjectId(str_obj)})
{u'_id': ObjectId('5b259ead39d9c04f7b43af07'), u'user_id': u'maxx'}

Datensatz löschen

>>> users.delete_one({'_id':ObjectId(str_obj)})    
<pymongo.results.DeleteResult object at 0x7fd0136cee18>

Datensatz aktualisieren

>>> new_user = {'user_id':'maxx', 'name':'Hans Wurst'}
>>> users.insert_one(new_user)
>>> change = {'name': 'Fritz Fritz'}
>>> users.update_one({'_id':ObjectId('5b25a14f39d9c04f7b43af08')}, {'$set':change} )
<pymongo.results.UpdateResult object at 0x7fd0136ced40>
>>> users.find_one({'_id':ObjectId('5b25a14f39d9c04f7b43af08')})                                                            
{u'_id': ObjectId('5b25a14f39d9c04f7b43af08'), u'user_id': u'maxx', u'name': u'Fritz Fritz'}

Bereich bei Suche

>>> client = MongoClient()         
>>> db = client.huu
>>> c = db.test
>>> posts = [{"author":"Fritz Fuchs", "book":"Hasenjagd 5", "boo":1}, {"author":"Fritz Fuchs", "book":"Hasenjagd 6", "boo":5}, {"author":"Fritz Fuchs", "book":"Hasenjagd 7", "boo":10}] 
>>> c.insert_many(posts)

>>> for post in c.find({"boo": {"$lt": 6}}).sort("author"):
...     print post
... 
{u'author': u'Fritz Fuchs', u'_id': ObjectId('5b25bb9539d9c05186997b54'), u'book': u'Hasenjagd 5', u'boo': 1}
{u'author': u'Fritz Fuchs', u'_id': ObjectId('5b25bb9539d9c05186997b55'), u'book': u'Hasenjagd 6', u'boo': 5}

>>> for post in c.find({"boo": {"$gt": 6}}).sort("author"): 
...     print post
... 
{u'author': u'Fritz Fuchs', u'_id': ObjectId('5b25bb9539d9c05186997b56'), u'book': u'Hasenjagd 7', u'boo': 10}

>>> for post in c.find({"boo": {"$lt": 6, "$gt": 3}}).sort("author"): 
...     print post
... 
{u'author': u'Fritz Fuchs', u'_id': ObjectId('5b25bb9539d9c05186997b55'), u'book': u'Hasenjagd 6', u'boo': 5}

 

Quelle / weitere Beispiele: http://api.mongodb.com/python/current/tutorial.html

 

Schreibe einen Kommentar

Diese Website verwendet Akismet, um Spam zu reduzieren. Erfahre mehr darüber, wie deine Kommentardaten verarbeitet werden.